Graph Operations on Parity Games and Polynomial-Time Algorithms

Christoph Dittmann, Stephan Kreutzer, Alexandru I. Tomescu

Chair for Logic and Semantics, Technical University Berlin

September 11, 2012
GAMES Workshop, Napoli, Italia
Parity Games

- Parity games are polynomial-time equivalent to the model-checking problem of the modal μ-calculus.
- Computing the winner of a parity game is in NP \cap coNP.
Parity Games

- Parity games are polynomial-time equivalent to the model-checking problem of the modal μ-calculus.
- Computing the winner of a parity game is in $\text{NP} \cap \text{coNP}$.

- Open problem: Is there a polynomial-time algorithm for computing the winner of a parity game?
Motivation and contributions

Parity games are known to be solvable in polynomial time on restricted classes of graphs, e.g.:

- graphs of bounded tree-width,
- directed clique-width, DAG-width, entanglement
Motivation and Contributions

Parity games are known to be solvable in polynomial time on restricted classes of graphs, e.g.:

- graphs of bounded tree-width,
- directed clique-width, DAG-width, entanglement

We study graph operations which preserve polynomial-time solvability in order to:

- construct larger classes of graphs
- identify new classes where parity games are solvable in polynomial time
- elucidate new combinatorial properties
Motivation and Contributions

Parity games are known to be solvable in polynomial time on restricted classes of graphs, e.g.:

- graphs of bounded tree-width,
- **directed** clique-width, DAG-width, entanglement

We study graph operations which preserve polynomial-time solvability in order to:

- construct larger classes of graphs
 - join of graphs, adding a single vertex, repeated pasting along vertices
- identify new classes where parity games are solvable in polynomial time
- elucidate new combinatorial properties
Motivation and contributions

Parity games are known to be solvable in polynomial time on restricted classes of graphs, e.g.:

- graphs of bounded tree-width,
- directed clique-width, DAG-width, entanglement

We study graph operations which preserve polynomial-time solvability in order to:

- construct larger classes of graphs
 - join of graphs, adding a single vertex, repeated pasting along vertices
- identify new classes where parity games are solvable in polynomial time
 - orientations of complete graphs, complete bipartite graphs, block graphs
- elucidate new combinatorial properties
Motivation and contributions

Parity games are known to be solvable in polynomial time on restricted classes of graphs, e.g.:

- graphs of bounded tree-width,
- directed clique-width, DAG-width, entanglement

We study graph operations which preserve polynomial-time solvability in order to:

- construct larger classes of graphs
 - join of graphs, adding a single vertex, repeated pasting along vertices
- identify new classes where parity games are solvable in polynomial time
 - orientations of complete graphs, complete bipartite graphs, block graphs
- elucidate new combinatorial properties
 - deciding the winning regions of a parity game is as hard as computing them
Parity Games

Definition

A parity game $P = (V, V_\square, V_\Diamond, E, \Omega)$ is a directed graph (V, E) with a partitioning of the nodes $V = V_\square \cup V_\Diamond$ and a priority function $\Omega : V \to \mathbb{N}$.
Parity Games

In a **play**, the players push a token along the edges of the graph. The sets $V_{\bigcirc}, V_{\square}$ determine whose turn it is.

Definition

A **play** is a maximal sequence of nodes v_1, v_2, \ldots such that $(v_i, v_{i+1}) \in E$ for all i.

A play is **winning for Player \bigcirc** if the maximum priority that appears infinitely often is even or if the last node is in V_{\square}.
Parity Games

In a play, the players push a token along the edges of the graph. The sets V_\circ, V_\square determine whose turn it is.

Definition

A play is a maximal sequence of nodes v_1, v_2, \ldots such that $(v_i, v_{i+1}) \in E$ for all i.

A play is winning for Player \circ if the maximum priority that appears infinitely often is even or if the last node is in V_\square.

Parity games are positionally determined.

We let $W_i(P) :=$ the winning region of player i, that is, the set of all nodes from which player i has a positional winning strategy, $i \in \{\circ, \square\}$.

Solving a game means computing its winning regions.
GUIDING IDEA

We will prove that our graph operations guarantee that either:

- We can reduce the problem to solving a proper subgame $P' \subsetneq P$, or
- One winning region of P is empty.
GUIDING IDEA

We will prove that our graph operations guarantee that either:

- We can reduce the problem to solving a proper subgame \(P' \subset P \), or
- One winning region of \(P \) is empty.

If this is the case, we can apply the following lemma:

lemMA

Let \(C \) be a **hereditary** class of parity games and assume that there is an \(O(n^c) \) time algorithm which for each \(P \in C \) returns either:

1. A proper subgame \(P' \) and \(W^*, W^* \subseteq V(P) \setminus V(P') \) with

 \[
 W_\bigcirc(P) = W^* \cup W_\bigcirc(P'),
 \]

 \[
 W_\square(P) = W^* \cup W_\square(P').
 \]

2. “\(W_\bigcirc(P) = \emptyset \) or \(W_\square(P) = \emptyset \)”.
GUIDING IDEA

We will prove that our graph operations guarantee that either:

- We can reduce the problem to solving a proper subgame $P' \subset P$, or
- One winning region of P is empty.

If this is the case, we can apply the following lemma:

Lemma

Let C be a **hereditary** class of parity games and assume that there is an $O(n^c)$ time algorithm which for each $P \in C$ returns either:

1. A proper subgame P' and $W^*, W^* \subseteq V(P) \setminus V(P')$ with

 $W^\bigcirc(P) = W^* \cup W^\bigcirc(P')$,
 $W^\bigsquare(P) = W^* \cup W^\bigsquare(P')$.

2. "$W^\bigcirc(P) = \emptyset$ or $W^\bigsquare(P) = \emptyset$".

Then C can be solved in time $O(n^{c+1})$.
Deciding winning regions

Problem: Deciding winning regions

Given a parity game P and $A \subseteq V(P)$, decide if $W_{\square}(P) = A$.
Deciding winning regions

Problem: Deciding winning regions

Given a parity game P and $A \subseteq V(P)$, decide if $W_2(P) = A$.

Theorem

Deciding winning regions is as hard as computing them, even if we can only decide whether $W_2(P) = V(P)$.
JOINS

Game P is a join of P' and P'' if for every $i \in \{\circ, \Box\}$, every vertex of Player i in P' is connected with every vertex of Player \bar{i} in P''.
JOINS

Game P is a join of P' and P'' if for every $i \in \{\bigcirc, \Box\}$, every vertex of Player i in P' is connected with every vertex of Player \bar{i} in P''.

![Diagram showing the join of two games P' and P'']
JOINS

Game P is a join of P' and P'' if for every $i \in \{\circ, \blacksquare\}$, every vertex of Player i in P' is connected with every vertex of Player \bar{i} in P''.

![Diagram showing the join of two graphs P' and P''.]
JOINS

Game P is a join of P' and P'' if for every $i \in \{\circ, \square\}$, every vertex of Player i in P' is connected with every vertex of Player \bar{i} in P''.
JOINS

Game P is a join of P' and P'' if for every $i \in \\{\circ, \Box\}$, every vertex of Player i in P' is connected with every vertex of Player \bar{i} in P''.
JOINS

Game P is a join of P' and P'' if for every $i \in \{\circ, \square\}$, every vertex of Player i in P' is connected with every vertex of Player i in P''.

- Other edges between P' and P'' can be present or not
JOINS

Game P is a join of P' and P'' if for every $i \in \{\circ, \square\}$, every vertex of Player i in P' is connected with every vertex of Player \tilde{i} in P''.

- Other edges between P' and P'' can be present or not

- If P' is a \square-player game having all edges and P'' is a \circ-player game having all edges, then P is an orientation of a complete graph (i.e., tournament)
JOINS

Game P is a **join** of P' and P'' if for every $i \in \{\circ, \square\}$, every vertex of Player i in P' is connected with every vertex of Player \tilde{i} in P''.

- Other edges between P' and P'' can be present or not

- If P' is a \square-player game having all edges and P'' is a \circ-player game having all edges, then P is an **orientation of a complete graph** (i.e., tournament)
- If P' and P'' are parity game without edges, and we add all edges between P' and P'', then P is an **orientation of a complete bipartite graph**
JOINS

Definition

Let C, C' be two classes of parity games.

$$\text{Join}(C, C') := \{ P \mid P \text{ is a join of } P' \in C \text{ and } P'' \in C' \}$$

$$\text{HalfJoin}(C) := \{ P \mid P \text{ is a join of a single-player game } P' \text{ and a game } P'' \in C \}$$

Theorem

If C, C' are hereditary classes of parity games that can be solved in polynomial time, then all games $P \in \text{HalfJoin}(C)$ (in $\text{Join}(C, C')$, resp.) can be solved in polynomial time, provided that a decomposition of P as a join is given.
Main ingredient of the proof
Let P be a game and $u \in W_\square(P)$ and $v \in W_\circ(P)$.

In the join operation we require some arcs between vertices of different players.
- This restricts the winning regions.
Main Ingredient of the Proof

Let P be a game and $u \in W □ (P)$ and $v \in W □ (P)$.

In the join operation we require some arcs between vertices of different players.

- This restricts the winning regions.
MAIN INGREDIENT OF THE PROOF

Let P be a game and $u \in W_{\Box}(P)$ and $v \in W_{\circ}(P)$.

- In the join operation we require some arcs between vertices of different players
- This restricts the winning regions
Main Ingredient of the Proof

Let P be a game and $u \in W_{\Box}(P)$ and $v \in W_{\circ}(P)$.

- In the join operation we require some arcs between vertices of different players
- This restricts the winning regions
Main Ingredient of the Proof

Let P be a game and $u \in W_{\Box}(P)$ and $v \in W_{\bigcirc}(P)$.

In the join operation we require some arcs between vertices of different players

- This restricts the winning regions
Main Ingredient of the Proof

Let P be a game and $u \in W_\square(P)$ and $v \in W_\circ(P)$.

> Conclusion: There can be no arc between u and v

- In the join operation we require some arcs between vertices of different players
- This restricts the winning regions
Algorithm for HalfJoin (1)

- $\text{attr}_i(A) :=$ the nodes from which Player i can force the game to reach A
- $W_{\Box}(P \setminus \text{attr}_O(A)) \subseteq W_{\Box}(P)$
Algorithm for HalfJoin (1)

- \(\text{attr}_i(A) := \) the nodes from which Player \(i \) can force the game to reach \(A \)
- \(W_\square(P \setminus \text{attr}_\square(A)) \subseteq W_\square(P) \)

Suppose that \(P \) is a HalfJoin of a \(\square \)-player game \(P' \) with a game \(P'' \) in \(C \).

Algorithm for solving HalfJoin(\(C \)) (Part 1)

1. Solve \(P_1 := P \setminus \text{attr}_\square(V''_\square) \) (\(\square \)-player game).
2. If \(W_\square(P_1) \neq \emptyset \), return the subgame \(P \setminus \text{attr}_\square(W_\square(P_1)) \).

\[P_1 = P \setminus \text{attr}_\square(V''_\square) \text{ is a single-player game} \]
Algorithm for HalfJoin (2)

- \(\text{attr}_i(A) := \) the nodes from which Player \(i\) can force the game to reach \(A\)
- \(W_\square(P \setminus \text{attr}_\square(A)) \subseteq W_\bigcirc(P)\)

Suppose that \(P\) is a HalfJoin of a \(\square\)-player game \(P'\) with a game \(P''\) in \(C\).

Algorithm for solving HalfJoin(\(C\)) (Part 2)

3. Solve \(P_2 := P \setminus \text{attr}_\square(V'_\square)\) (game from \(C\)).
4. If \(W_\bigcirc(P_2) \neq \emptyset\), return the subgame \(P \setminus \text{attr}_\bigcirc(W_\bigcirc(P_2))\).
Algorithm for HalfJoin (2)

- $\text{attr}_i(A) :=$ the nodes from which Player i can force the game to reach A
- $W_\Diamond(P \setminus \text{attr}_\Box(A)) \subseteq W_\Diamond(P)$

Suppose that P is a HalfJoin of a □-player game P' with a game P'' in C.

Algorithm for solving HalfJoin(C) (Part 2)

3. Solve $P_2 := P \setminus \text{attr}_\Box(V'_\Box)$ (game from C).
4. If $W_\Diamond(P_2) \neq \emptyset$, return the subgame $P \setminus \text{attr}_\Box(W_\Diamond(P_2))$.
5. Return "$W_\Diamond(P) = \emptyset$ or $W_\Box(P) = \emptyset$".

$P_2 = P \setminus \text{attr}_\Box(V'_\Box)$ is in C
Algorithm for HalfJoin (2)

- \(\text{attr}_i(A) := \text{the nodes from which Player } i \text{ can force the game to reach } A \)
- \(W_\square(P \setminus \text{attr}_\square(A)) \subseteq W_\square(P) \)

Suppose that \(P \) is a HalfJoin of a \(\square \)-player game \(P' \) with a game \(P'' \) in \(C \).

Algorithm for Solving HalfJoin(\(C \)) (Part 2)

3. Solve \(P_2 := P \setminus \text{attr}_\square(V'_\square) \) (game from \(C \)).
4. If \(W_\square(P_2) \neq \emptyset \), return the subgame \(P \setminus \text{attr}_\square(W_\square(P_2)) \).
5. Return "\(W_\square(P) = \emptyset \) or \(W_\square(P) = \emptyset \)".
PROOF FOR HalfJoin

Suppose that P is a HalfJoin of a \square-player game P with a game P'' in C.

Case 1: $W_\bigcirc(P) \cap P' \neq \emptyset$
PROOF FOR HalfJoin

Suppose that P is a HalfJoin of a □-player game P with a game P'' in C.

Case 1: $W_\bigcirc(P) \cap P' \neq \emptyset$

- $P_1 = P \setminus \text{attr}_\bigcirc(V''')$ is a □-player game

(a) Subcase 1a: $W_\Box(P_1) \neq \emptyset$

(b) Subcase 1b: $W_\Box(P_1) = \emptyset$
Proof for HalfJoin

Suppose that P is a HalfJoin of a \Box-player game P' with a game P'' in C.

Case 2: $W_\Box(P) \cap P' = \emptyset$.

$$P_2 = P \setminus \text{attr}_\Box(V'_\Box) \text{ is in } C$$

(a) Subcase 2a: $W_\Box(P_2) \neq \emptyset$

(b) Subcase 2b: $W_\Box(P_2) = \emptyset$
Proof for Join

For $\text{Join}(C, C')$, we proceed in exactly the same way.

The subgames will be in $\text{HalfJoin}(C)$ and in $\text{HalfJoin}(C')$, so they can be solved in polynomial time.
Adding a Single Vertex

Let

\[\text{AddVertex}(C) := \{ P \mid P \text{ is a parity game and there exists a vertex } v \text{ such that } P \setminus \{v\} \in C \} \]
Adding a Single Vertex

Let

\[
\text{AddVertex}(C) := \{P \mid P \text{ is a parity game and there exists a vertex } v \text{ such that } P \setminus \{v\} \in C\}.
\]

Theorem

If \(C\) is a hereditary class of parity games which can be solved in time \(O(n^c)\), then \(\text{AddVertex}(C)\) can be solved in time \(O(n^{c+1})\), assuming that the added vertex is part of the input.
ADDING A SINGLE VERTEX

Let

\[
\text{AddVertex}(C) := \{ P \mid P \text{ is a parity game and there exists a vertex } v \text{ such that } P \setminus \{v\} \in C \}.
\]

Theorem

If \(C \) is a hereditary class of parity games which can be solved in time \(O(n^c) \), then \(\text{AddVertex}(C) \) can be solved in time \(O(n^{c+1}) \), assuming that the added vertex is part of the input.

An **apex graph** is a graph \(G \) with a vertex \(v \) such that \(G \setminus \{v\} \) is a planar graph.

Corollary

If the class of parity games on planar graphs can be solved in polynomial time, then the class of parity games on apex graphs can be solved in polynomial time.
Theorem

If C is a hereditary class of parity games that can be solved in polynomial time, then games in $\text{RepeatedPasting}(C)$ can be solved in polynomial time.
Theorem

If C is a hereditary class of parity games that can be solved in polynomial time, then games in $\text{RepeatedPasting}(C)$ can be solved in polynomial time.

A **block graph** is an undirected graph whose 2-connected components are complete graphs.

Corollary

Parity games on any orientation of a block-graph can be solved in polynomial time.
Conclusions

We considered three graph operations and showed that they preserve the polynomial-time solvability of parity games:

- join of graphs, adding a single vertex, repeated pasting along vertices
CONCLUSIONS

We considered three graph operations and showed that they preserve the polynomial-time solvability of parity games:

▶ join of graphs, adding a single vertex, repeated pasting along vertices

By particularizing these constructions, we identified new classes of graphs on which parity games are solvable in polynomial-time:

▶ orientations of complete graphs, complete bipartite graphs, or block graphs
CONCLUSIONS

We considered three graph operations and showed that they preserve the polynomial-time solvability of parity games:

▶ join of graphs, adding a single vertex, repeated pasting along vertices

By particularizing these constructions, we identified new classes of graphs on which parity games are solvable in polynomial-time:

▶ orientations of complete graphs, complete bipartite graphs, or block graphs

Future work:

▶ search for other graph operations
▶ complete graphs and complete bipartite graphs have undirected clique-width 2; can we say something about any graph of undirected clique-width 2?
▶ study whether these graph operations preserve solvability of other games